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Abstract—Multivariate time series, which is a set of ordered
observations for multiple variables, is pervasively generated in
air condition, traffic, entertainment, etc. Echo State Network
has shown promising performance for processing multivariate
time series due to its ability to approximate sequential dynamics.
However, the intrinsic relationships among time series have not
been generally analyzed in the previous Echo State Network
based methods. These relationships may help reveal the intrin-
sic characteristics of multivariate time series and benefit the
classification performance. In this paper, we propose a novel
method for approximating the sequential dynamics and learning
the relationship among multiple variables explicitly in a unified
framework. We learn a model for each multivariate time series
and evaluate the distance of the original multivariate time series
by the distance of their models. The relationship among variables
in a multivariate time series is learnt according to Granger
causality. We further constrain the sparsity of the learnt time
series models to find the Focal series which help explain all the
series. Experiments on benchmark datasets demonstrate superior
classification performance of the proposed method.

Index Terms—Granger causality, Echo state network, multi-
variate time series, focal series

I. INTRODUCTION

A multivariate time series (MTS) contains a set of ordered

observations at discrete time for multiple variables. MTS

can be viewed as a collection of multiple univariate time

series. MTS is ubiquitously generated in traffic prediction [1],

air condition [2] and economy [3], etc. Although a lot of

efforts have been made for processing MTS data, the implicit

relationships among sub-series1 in a MTS and possibly varying

length still raise significant challenges to learn from MTS.

Echo State Network (ESN) is a variant of Recurrent Neural

Network [4]. Due to ESN’s design nature, the process of

training ESN is more simple. With its ability to capture the

order information of time series, ESN is widely employed [5]–

[7]. Chen et al. [8] proposed model-based kernels for time

series classification. In their approach, each time series is

represented by the readout mapping of an ESN [8]. Then the

learnt time series models are employed for classification. Wang

et al. [9] employed ESN with adaptive differential evolution

algorithm. The key idea is to transform MTS samples into

different state clouds and use the state clouds as features.

However, the problem for providing explainable insights for

modeling MTS has been generally ignored. Basic ESN can not

explicitly reveal the intrinsic relationships among sub-series in

a MTS. Moreover, the fully connected readout layer may lead

to overfitting.

1The time series for a specific variable in a MTS.

Granger Causality (G-causality) refers to a predictive re-

lationship among time series. Generally speaking, given two

time series X and Y, if it would be more favorable in pre-

dicting X with the incorporation of Y’s historical information

than using X’s own historical information, that is, Y G-causes

X [10]. G-causality is useful in finding the relationships for

multiple variables, such as human action classification [11],

anomaly detection [12] and stock analysis [13]. Previously

Vector Autoregression (VAR) model is employed to reveal the

G-causality between different time series [14]. The goal is

to minimize the prediction error. However, in a VAR model,

the historical information is limited to the size of a sliding

window. In this case, the nonlinear information and dynamics

of time series are largely ignored.

In this paper, we intend to take advantage of nonlinear ap-

proximating ability of ESN and G-causality in learning models

for MTS. The ESN is employed as a general-purpose nonlinear

temporal filter. For each MTS, we input each sub-series to

an ESN iteratively. Then we learn the readout mapping of

ESN by G-causality to reveal the nonlinear relationship among

different sub-series. We further designed a sparsity-enhanced

method for finding the focal series (FS) which are able to G-

cause all the other sub-series. We employ ESN as the model

for the input MTS. The distance of original MTS is evaluated

by the distance of their models. The general architecture of

our method is illustrated in Fig. 1.

There are three advantages of our approach:

1) The proposed method is able to classify multivariate

time series of different length;

2) A principled distance between the time series models

can be formulated analytically under a certain assump-

tion;

3) The sparsity of the proposed method helps improve

the generalization ability for classification. In addition,

the focal series can be found, which endows more

explanation ability for our method.

The rest of the paper is organized as follows. Section

II introduces related works and background on time series

classification. Section III details the proposed methods. In

Section IV, we present our experiments and demonstrates the

effectiveness of our proposed method. Finally, our work is

concluded in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we first review some related works on MTS

classification. Then we introduce background of the ESN and

G-causality.
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Fig. 1. Architecture of our proposed method. The whole process of our method contains four steps. (1) Each sub-series of a MTS is fed to ESN respectively.
(2) Approximate the sequential dynamic of each sub-series by ESN and collect the corresponding reservoir state. (3) G-causality is applied to the readout
mapping of ESN. We learn the readout mapping coefficient for focal series and we show the G-causality by G-causality graph. The dashed arrow from Xi

to sj represents that the learnt corresponding coefficient is zero, that is, there is no G-causality between two series. The solid arrow from Xi to sj indicates
that the learnt corresponding coefficient is nonzero, that is, there is G-causality between two series. (4) The distance between two models is calculated under
a certain assumption.

A MTS dataset contains a set of sample-label pairs

{Si, Ci}Ntr
i=1 . Si = [si1; s

i
2; · · · ; sim] ∈ Rm∗n contains n

sequential observations of m variables. Hence, each row in Si

is a sub-series. si ∈ Rn is the time series for the ith variable,

which has n samples. C ∈ {1, 2, · · · , Clabel} is the label for

the MTS. Roughly speaking, MTS classification methods can

be categorized into three branches.

The first one transforms the original series to obtain the

feature vectors. K-gram employs a short segment of k con-

secutive symbols as a feature [15]. In this way, traditional

classifiers can utilize the pre-treated data for convenience. In

[16], the authors used Gamma-test to search for homologies

in nucleotide sequences by selecting a small sized informative

features from the k-grams. In [17], the authors proposed time

series shapelets that are able to represent a class maximally.

However, they can only represent local properties of a se-

quence. These methods mainly require a complex preprocess

to select features according to certain criteria [18].

The second category is based on the sequence distance. In

this case, the definition of distance function is the critical

for MTS classification. Dynamic time warping (DTW), as

illustrated in Fig. 2, is a method that aligns two time series

by warping along time axis such that their accumulative

distance is minimized [19]. With nearest neighbor (1-nn)

classifier, DTW has proved to be strong solution. DTW is more

precise and elastic than Euclidean distance [20]. However,

The time complexity of DTW is quadratic, which limits the

application to long time series. Kernel methods also has widely

applied to time series classification, such as Fisher kernel

[21], Autoregressive kernel [22] and Model-based kernel [8].

However, more computation cost is required for building a

desired kernel.

The third category of methods approximate time series with

a generative model. Jebara et al. [23] demonstrated probability

product kernels on hidden Markov model (HMM). It maps

Fig. 2. Architecture of Dynamic time warping. The dashed line and the solid
line represent two different time series. The thin line is the ”warping path”
between two instances.

each time series to a HMM and makes the definition for the

inner product between the corresponding HMM distributions.

Srivastava et al. [24] used HMM to classify biological se-

quences. The key idea of that approach is to empoy HMM

by optimising the discrimination threshold and modifying

emission probabilities to represent the training data. HMM

based methods are not sensitive to noise and the length of

time series, but the Markov constraint limits the approximation

ability to nonlinear time series.

Granger et al. [10] proposed Copular-Granger to read the

non-linearity of time series in high dimensions. Arnold et.al

[25] applied G-causality to lasso regression and other linear

regression models. The similarity measurement of the G-

causality graph is provided. However they can not guarantee

the sparsity in the G-causality graphs, which unable to insure

that the regressions will not be overfitted .

III. GRANGER CAUSALITY BASED MULTIVARIATE TIME

SERIES MODEL LEARNING

A. G-causality graph

Time series prediction is to employ the historical informa-

tion to predict the future behavior of the time series.

Formally speaking, for two sub-series time series X and

Y, if the combination of the historical information of both X
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and Y leads to better prediction performance than that solely

based on X’s own historical information , it is defined that

time series Y Granger causes (G-causes) time series X. And

the causal relationship between X and Y is called Granger

causality (G-causality). A directed graph G = {V ,E}, called

G-causality graph is usually employed to visualize the G-

causality between pairwise time series. In the G-causality

graph, vertices represent the sub-series and the directed edge,

directed from va to vb, namely eab, represents that sub-series a
G-causes sub-series b. Fig. 3 illustrates the G-causality graph.

1

2 5

3 4

Fig. 3. An example of G-causality graph. The G-causality graph illustrates
that time series 2 and time series 5 G-cause all the remaining time series.
Thus, the focal series are time series 2 and time series 5 in this situation.

B. Echo State Network

Echo State Network (ESN) [8] is employed as the core

model for approximating the sequential dynamics in our

method. A typical ESN consists of three components: input

layer, reservoir layer and output layer, which contains D, N
and L neurons respectively. The connections between the input

neurons and the reservoir neurons and the connections among

the reservoir neurons are prefixed randomly. The reservoir

provides versatile dynamical features for the input time series.

The readout mapping maps the reservoir states to the desired

outputs and is the only part which needs to be trained. In

contrast with classical Recurrent Neural Network, the training

process of ESN is more simple. The architecture of ESN is

depicted in Fig. 4.

   

fixed trained 

Fig. 4. Illustration of the architecture of basic Echo State Network assumed
in this article.

The mechanism of Echo State Networks can be defined by

the following:

x(t) = h(Wx(t− 1) +Wins(t)) (1)

y(t) = Woutx(t) = f(x(t)) (2)

where s(t) ∈ R
D is the element of the input time series at

time t, x(t) ∈ R
N is the reservoir state, and y(t) ∈ R

D is

the target output. W ∈ R
N×N is the reservoir weight matrix,

Win ∈ R
N×D is the input coefficient, Wout ∈ R

D×N is the

output coefficient. h is the nonlinear activation function and

is set as tanh in the paper. Thus x ∈ [−1, 1]
N

. The readout

mapping is the only trainable component which can be trained

by linear regression efficiently. In this paper, we train the

readout mapping to predict the next input, i.e., y(t) = s(t+1).
In principle, the output weights can be estimated with squared

error loss function, namely:

L(Wout) =

T−1∑
t=1

(y(t)− s(t+ 1))2 (3)

The goal is to faithfully predict the next input by taking

advantages of the approximation ability of ESN.

C. Sparse Focalised-Readout Mapping

In a MTS, a sub-series can be predicted by the its own

input history, ignoring the information from other sub-series.

In this case, each series has an arrow pointing to itself in

the G-causality graph. In a MTS, if there exist several sub-

series that are able to G-cause not only themselves but also

the remaining series, we denote this subset of sub-series as

Focal series (FS). FS provide information about the generation

mechanism of the MTS. It has been shown that capturing the

intrinsic information of data may help enhance the classifica-

tion performance [26]. This motivates us to uncover the FS in

our MTS classification approach.

In our method, we process each sub-series in a MTS

separately with the same prefixed ESN. We train the readout

mapping for each sub-series by using the states of all sub-

series, as demonstrated in Fig. 5. Thus, each sub-series has

its own coefficients for readout. We collect these coefficients

for analyzing the G-causality. Following the typical setting of

ESN, we denote Wout as the collection of all the readout

parameters.

Given a MTS containing D sub-series, for each time point

t ∈ {1, 2, · · · , T−1}, the ith sub-series si(t) ∈ R is fed to the

ESN to get the corresponding reservoir state matrix xi(t) ∈
RN×1, where N is the reservoir size and i ∈ {1, · · · , D}.

All the state matrices xi(t) are combined to predict the j-th

sub-series with weight matrix Woutij ∈ RN×1:

yj(t) =
D∑
i=1

xT
i (t)Woutij (4)

where yj(t) = sj(t+ 1) ∈ R.

Similarly, Woutij , i, j ∈ {1, · · · , D} is arranged into matrix

Wout as follows

Wout =

⎛
⎜⎜⎜⎝

Wout11 Wout12 · · · Wout1D

Wout21 Wout22 · · · Wout2D
...

...
. . .

...

WoutD1
WoutD2

· · · WoutDD

⎞
⎟⎟⎟⎠ ∈ RND×D

(5)

where Woutij ∈ RN×1.
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Fig. 5. Illustration of sparsity constrained G-causality in learning MTS
models. The colored column represents the element of reservoir state at a
moment. Xi represents the ith collected reservoir state, sj represents the
desired output(the jth time series). We set ith reservoir state as the input and
each sj as the target respectively, and get corresponding Wouti,j .The dashed
arrow from Xi to sj represents that the learnt corresponding coefficient is
zero, that is, there is no G-causality between two series. The solid arrow from
Xi to sj indicates that the learnt corresponding coefficient is nonzero, that
is, there is G-causality between two series.

We decompose Wouti,j = Ψi,jri,j into the form of a

scalar Ψi,j and a same dimension vector ri,j ∈ RN×1,

i, j ∈ {1, · · · , D}. Then the loss function is generalized as

L(Ψ, r) =

D∑
j=1

(T−1)∑
t=1

(yj(t)−
D∑
i=1

xT
i (t)Ψi,jri,j)

2 (6)

If the learnt Ψi,j is non-zero, the ith time series G-causes

the jth time series. In this way, we are able to reveal the G-

causality and learn the G-causality graph from the coefficient

of Wout. The process of learning the G-causality readout

mapping is illustrated in Fig. 5. The algorithm is described

in Algorithm 1 in detail.

Algorithm 1 G-causality-based ESN Algorithm

1: Input: a dataset of MTS {Sk, Ck}Ntr

k=1 Sk = sk1 , · · · , skD,

k = 1, · · · , Ntr; the number of reservoir units N ;

2: Output: Distance matrix among MTS.

3: for each MTS S ∈ {Sk, Ck}Ntr

k=1 do
4: for each sub-series sj , j = 1, · · · , D do
5: Update the reservoir states with the input univariate

time series si and obtain the reservoir state xi (Eq.

1).

6: for each xi, i = 1, · · · , D do
7: Learn the Woutij by using the linear simplex

constrained regression on sj and xi (Algorithm 2).

8: end for
9: end for

10: end for
11: Calculate the distance L2(fi, fj), ∀i, j = 1, · · · , Ntr, via

Eq. 9 (Sections D).

In this way, we provide a method to control the sparsity of

the readout mapping by the D × D matrix Ψ instead of the

ND × D matrix Wout itself. In our method, we transform

the matrix Ψ into two D × D matrices: a sparse matrix M
capturing the common part i.e. the focal series; and the second

one is a diagonal matrix Q = τI. M represents the common

part and Q represents the specific part. We tie the matrices

together by Ψ = M− diag(M) + Q where we set τ = 1 for

convenience. Thus, the experimental results of our method are

not meant to be optimal.

To this end, our objective is to minimize the constrained

loss function Eq. 6.

argminL
Ψ,r

(Ψ, r) s.t. 1′m = 1;m ≥ 0; ‖ r ‖2F≤ ε (7)

where ‖ · ‖F is the Forbenius norm, 1 is the a vector of D
ones, m is the a column vector of M and all elements in m
are initialized as 1

D , where D is the number of sub-series in

a MTS.

The simplex constraint on m has an important impact on

the sparsity for Wout. We optimize the objective function by

alternating descent for r and m to find a local minimum. More

details can be acquired in Algorithm 2.

Algorithm 2 Sparsity Controlling Algorithm

1: Input: y,x,λ;

2: Output: r, m
3: repeat
4: Steps for r
5: Initiate all columns of M as m = 1

D ;

6: Get Ψ = M− diag(M) +Q where Q = I;
7: Update pt,i,j = xt,iΨi,j ;

8: Solve for each j ‖y.,j −Pjr.,j‖22 + λ‖r.,j‖22;

9: Steps for m
10: Get at,i,j = xT

t,i · ri,j
11: get residual by using the own history ht,j = yt,j−

at,j,j ;

12: concatenate at,i,j into (T − 1)×D matrix Ai and

replace the ith column in Ai by zeros.

13: concatenate Ai into D(T − 1)×D matrix A.

14: Get m by h = mA with simplex constraint.

15: until convergence

D. Distance between two models

Since the models is considered to capture the important

information of the local data collections [27]. It contributes

to more robust and more targeted learning on diverse data

collections [28]. One may be interested in the distance in the

function space of the readout model instead of the distance

between the model parameterizations [8]. Therefore, we treat

the readout mapping as representation of time series and use

the distance of the readout mappings of ESN to measure the

similarity between two MTS. The L2 distance between the

readout mapping f1(x) and f2(x) are defined as:

L2(f1, f2) =

(∫
δ

‖f1(x)− f2(x)‖2 dμ(x)
)1/2

, (8)
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where μ(x) is the probability density function on the input

(reservoir) domain δ. Since the activation function is tanh,

thus δ = [−1,+1]N .

We assume that x is uniformly distributed. The readout

mapping recalls Eq. 2. Consider two readout mapping gener-

ated from the first sub-sequence and the second sub-sequence.

f1(x) = Wout1x+ b1,

f2(x) = Wout2x+ b2.

Next,

L2(f1, f2) =

(∫
δ

(
‖Woutx‖2 + 2bTWoutx+ ‖b‖2

)
dx

)1/2

where Wout = Wout1 −Wout2 and b = b1 − b2. Because

δ = [−1,+1]N and bTWoutx is odd function, we have∫
δ

bTWoutx dx = 0.

Then the L2 distance can be rewritten as

L2(f1, f2) =

(∫
δ

(
‖Woutx‖2 + ‖b‖2

)
dx

)1/2

Finally, the L2 distance is shown below

L2(f1, f2) =

⎛
⎝2N

3

D∑
i=1

N∑
j=1

w2
i,j + 2N ‖b‖2

⎞
⎠

1/2

(9)

where wi,j is the (i, j)-th element of Wout.

After we obtain the distance matrix of MTS, we employ

SVM and knn as the classifier for classification. The whole

process of our method is shown below in Fig. 1.

IV. EXPERIMENTAL STUDIES

In this section, we perform experiments on benchmark

datasets to evaluate the performance of our proposed methods.

We first introduce the employed datasets. We then conduct

experiments to demonstrate the effectiveness of finding focal

series in a MTS. After that, we compare our method with other

state-of-the-art time series classification methods in terms of

classification accuracy. Then we demonstrate the robustness of

our method. Finally, we evaluate the influence of the size of

the reservoir for classification performance and the necessity

for preprocessing datasets.

A. Experimental Setup

Two distance-based classifiers, K Nearest Neighbor (knn)

[29] and SVM [30] are applied to the G-causality classifica-

tion methods. SVM and knn classifiers for our method are

distinguished as G-SVM and G-knn respectively. We compare

G-knn and G-SVM with DTW, Reservoir kernel (RV) [8], the

G-causality-based VAR (G-linear) and Fisher kernel (FK) [31].

In the G-causality-based classification methods (including G-

linear), all the hyperparameters are set as following: The

number of nodes in the reservoir state is set to a fixed number

as N = 100. SVM classifier is implemented by LIBSVM

[32]. The hyperparameters of SVM, such as the slack-weight

penalty C ∈ 10−3, 10−2, · · · , 103, scaling parameter γ ∈
10−6, 10−5, · · · , 10 are selected by 5-fold cross validation

(cv). The searching range of kernel width α is set the same

as γ’s. After determining these parameters on the training set,

we use the same parameters for test set.

In the knn classifier, the k is set from 1 to 10 with the step

length of 1, and k is selected according to the highest 5-fold

cv accuracy on the training data. We use the selected k to

evaluate the classification performance on the test set.

B. Multivariate Time Series Datasets

The proposed approach is empirically studied for the MTS

classification. To demonstrate the feasibility and effectiveness

of our proposed method, the experiments are performed on

seven datasets, i.e., Brazilian sign language (Libras), handwrit-

tern characters handwrittern, robot failure LP1 (LP1), robot

failure LP2 (LP2), Japanese Vowels (JV), ECG and Wafer.

Data sets, JV, LP1 and LP3, are downloaded from the

University of California at Irvine (UCI) [33] website2. Data

sets, ECG and Wafer, are acquired from OLszewski’s website3.

Except Libras, LP1 and LP3, the rest of the data sets are MTS

of various length. Libras and handwrittern are processed as

the way in [22]. As for JV, LP1, LP3, ECG and Wafer, we

randomly set a quarter of each raw dataset as test set and the

rest three quarters of dataset as training set. The statistics of

these MTS datasets are presented in Table I.

TABLE I
STATISTICS OF THE MTS DATASETS

Dataset Dim Length Classes Train Test

Libras 2 45 15 360 585

handwrittern 3 60-182 20 600 2258

LP1 6 15 4 66 11

LP3 6 15 4 36 11

ECG 2 39-152 2 150 50

Wafer 6 104-198 2 896 298

JV 12 7-29 9 270 370

The ECG dataset collects medical time sequences that are

recorded by an electrode. Each instance of ECG is a record

of electrical potentials sequence of heartbeat. The heartbeat’s

type can be categorized to normal class and abnormal class.

Supraventricular premature beats are selected as abnormal

heartbeats. The normal heartbeats are randomly selected from

these records.

The wafer dataset collects time sequences that are recorded

by a vacuum-chamber sensor. The silicon wafer’s informa-

tion is collected during the manufacture of semiconductor

microelectronics. Wafer’s type can be categorized to normal

class or abnormal class. The abnormal wafers are produced

during semiconductor manufacturing. And the normal wafers

are randomly selected from the process.

2https://archive.ics.uci.edu/ml/datasets.html
3http://www.cs.cmu.edu/∼bobski/data/data.html
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Fig. 6. The proposed method is more robust than others. The noisy is
additive Gaussian noise whose mean is zero and standard derivation varies in
[0.1:0.1:0.5]

Fig. 7. Example of the learnt parameter matrix Wout on the data set of LP1.
The value of the elements of Wout are indices of the default colormap that
determine the color of each patch in Matlab. Non-white cells are the non-zero
elements. The full-filled row represents the focal series.

The LP1 and LP2 datasets collect the information of force

and torque measurements for a robot after failure detection.

The instances are collected in regular time interval no sooner

than the failures occur.

The Libras dataset collects the sequential information of

hand movements in a period of time. The hand movements

are represented by a bidimensional curve which were studied

from videos of hand movements.

Handwrittern character dataset collects samples of pen tip

trajectories of individual characters. All samples are collected

from a same writer. Therefore, characters with a single pen-

down segment are the only part need to be changed.

Japanese Vowels dataset collects audio streams of two

Japanese vowels by Nine male speakers. It applies linear

prediction analysis to the audio data to obtain a discrete-time

series.

C. Experimental Results

The the results of our experiments are illustrated in this

subsection.
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Fig. 8. Classification performances of our methods for different number of
reservoir neurons. The experiments are conducted on the libras data set. The
reservoir size ranges from 10 to 250 with the step size of 10.

TABLE II
CLASSIFICATION ACCURACY FOR DIFFERENT DATASETS OF DTW, RV,

G-LINEAR,G-KNN, G-SVM AND FK (%). THE OPTIMAL PERFORMANCE

HAS BOLDFACED FOR EACH DATA SET.

Dataset DTW RV G-linear FK G-knn G-SVM

Libras 94.19 93.25 92.82 94.93 95.21 96.75
handwrittern 88.67 89.41 78.61 88.44 83.70 90.48

LP1 61.90 38.10 80.95 53.36 85.71 80.95
LP3 72.73 63.64 81.82 90.91 90.91 90.91
ECG 82.00 62.00 76.00 78.00 82.00 88.00
Wafer 85.91 89.93 90.60 58.72 90.60 91.28

JV 64.00 89.93 85.68 7.84 87.03 96.49

1) Focal Series and Sparsity: In order to demonstrate the

sparsity of the learnt Wout and prove the exist of FS, we

operate an experiment on LP1 dataset. The experiment is based

on the G-SVM framework. We color the element values in

the first sample of the learnt Wout. Fig. 7 depicts that the

learnt metric is sparse. And the value of diagonal elements is

not zero, which indicates that this method exploit series’ own

historical information. Moreover, the full-filled row captures

the common part shared by all the other series, which means

that there are indeed focal series in this sample and our

methods do capture the G-causality. Simplex constraint and

the FS play an important role in sparsity. For reasons that

the amount of the FS is in small amount, the learnt Wout is

obviously sparse.

2) Multivariate Time Series Classification: In order to

evaluate the classification performances of our method, we

compare our methods with RV, DTW, G-linear and fisher

kernel. Table II demonstrates the classification accuracies in

test set. The performances of the G-causality-based methods

are often superior to DTW, RV and FK. It indicates that

G-causality indeed exists among different sub-series and G-

causality is helpful in the process of predicting other time

series.

Moreover, the non-linear G-causality-based methods outper-

forms G-linear, at least not worse. Since ESN can fit time

series better than the linear model.

Compared with our methods, none of the baseline has all
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Fig. 9. Map the preprocessed data (the reservoir state collected in our method) and the original data into the a three-dimensional space to compare the results
of the classification performance on the datasets of Libras, LP1 and LP3.

the advantages that our methods have. DTW, RV and FK can

not reveal the insightful relationships among sub-sequences.

The G-linear can revel the relationships but lacks the satisfied

merit of enhancing classification accuracy.

3) Robustness: We carry out further experiment to evaluate

the robustness of the proposed method on Libras dataset.

The Libras is distorted by zero-mean Gaussian noise whose

standard derivation change from 0.1 to 0.5 with step length as

0.1. Fig. 6 shows that all the methods follow the descending

tendency when the Gaussian noise becomes larger, but G-SVM

and G-knn decline much slower. In other words, G-SVM and

G-knn enjoy better robustness and are not so sensitive to noise.

4) Influence of the Reservoir Size: To demonstrate the

influence of the number of reservoir neurons on the clas-

sification performance, we perform a group of experiments

on Libras dataset by varying the number of the reservoir

neurons from 10 to 250 with the step length of 10. For each

reservoir size, we repeat the experiment 25 times and report

the general results in Fig. 8. According to Fig. 8, we can

make two main observations. First, the classification accuracy

of our method follows approximately growing trend as the

number of the reservoir neurons is increasing. We attribute this

observation to the fact that larger reservoir usually maintains

more approximation ability to input sequences. Second, the

accuracy only varies within a small range from 93.5 to 97.

Thus, our method seems to be robust to the reservoir size.

5) Visualization: In order to evaluate whether the prepro-

cessed data (the reservoir state) collected in our method con-

tributes to classification performance, the experiment is carried

on the three datasets that occupy MTS of the same length,

including Libras, LP1 and LP3. We map both the raw datasets

and the managed datasets into the three-dimensional space.

We utilize the t-distributed stochastic neighbor embedding (t-

SNE) [34] for dimensionality reduction. T-SNE is a nonlinear

dimensionality reduction technique that is particularly well-

suited for embedding high-dimensional data into a space of

two or three dimensions, which can then be visualized in a

scattered plot. Alternatively, an initial solution obtained from

another dimensionality reduction technique may be specified

in initial solution. The labels of the data are used to color

intermediate plots. Similar classes are close together and have

the same color. The Matlab code of T-SNE comprises three

important parameters. The first one is the ”initial dims”,

which is the reduced the dimensionality for preprocessing by

PCA [35]. The second one is the ”no dim” which is the target

reduced dimension. The third one is the ”perplexity”, which

is the perplexity of the Gaussian kernel. We adjust the angle

of view of the mapping illustration to find the best view by

hand.

In Fig. 9, in the reduced dimensionality space, figure

visually shows that the plots of processed data with same label

distribute closer than the plots of the original data, that is,

when experiments are conducted by the same classifier, the

result on dealt data outperforms that on unprocessed data.
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V. CONCLUSION

In this paper, we propose a novel approach for MTS classifi-

cation by incorporating ESN with G-causality. Each sub-series

is employed to the Echo state network to obtain dynamical

information. Then the model of the MTS is trained according

to G-causality to integrate the sequential dynamics and the G-

causality between sub-series. The dissimilarity between MTS

is evaluated by the distance between their models. Experi-

mental results on benchmark datasets demonstrate that the

proposed method achieves better classification performance

than state-of-the-art MTS classification approaches. In addi-

tion, our method also shows more robustness. The training

process based on G-causality facilitates the sparsity of the

time series models and helps to find the focal series, which G-

causes the other time series. In this way, our method is able to

reveal the sub-series that are deemed to be the most important

for explaining the behavior of MTS.

Our method has limitation in classifying MTS in high

dimensionality. In the future, we will focus on reducing the

time complexity and optimizing the method.
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